|
In psychometrics, item response theory (IRT) also known as latent trait theory, strong true score theory, or modern mental test theory, is a paradigm for the design, analysis, and scoring of tests, questionnaires, and similar instruments measuring abilities, attitudes, or other variables. Unlike simpler alternatives for creating scales evaluating questionnaire responses it does not assume that each item is equally difficult. This distinguishes IRT from, for instance, the assumption in Likert scaling that "''All items are assumed to be replications of each other or in other words items are considered to be parallel instruments''"〔A. van Alphen, R. Halfens, A. Hasman and T. Imbos. (1994). Likert or Rasch? Nothing is more applicable than good theory. ''Journal of Advanced Nursing''. 20, 196-201〕 (p. 197). By contrast, item response theory treats the difficulty of each item (the ICCs) as information to be incorporated in scaling items. ICC stands for item characteristic curve. It is based on the application of related mathematical models to testing data. Because it is generally regarded as superior to classical test theory, it is the preferred method for developing scales in the United States, especially when optimal decisions are demanded, as in so-called high-stakes tests, e.g., the Graduate Record Examination (GRE) and Graduate Management Admission Test (GMAT). The name ''item response theory'' is due to the focus of the theory on the item, as opposed to the test-level focus of classical test theory. Thus IRT models the response of each examinee of a given ability to each item in the test. The term ''item'' is generic: covering all kinds of informative item. They might be multiple choice questions that have incorrect and correct responses, but are also commonly statements on questionnaires that allow respondents to indicate level of agreement (a rating or Likert scale), or patient symptoms scored as present/absent, or diagnostic information in complex systems. IRT is based on the idea that the probability of a correct/keyed response to an item is a mathematical function of person and item parameters. The person parameter is construed as (usually) a single latent trait or dimension. Examples include general intelligence or the strength of an attitude. Parameters on which items are characterized include their difficulty (known as "location" for their location on the difficulty range), discrimination (slope or correlation) representing how steeply the rate of success of individuals varies with their ability, and a pseudoguessing parameter, characterising the (lower) asymptote at which even the least able persons will score due to guessing (for instance, 25% for pure chance on a multiple choice item with four possible responses). ==Overview== The concept of the item response function was around before 1950. The pioneering work of IRT as a theory occurred during the 1950s and 1960s. Three of the pioneers were the Educational Testing Service psychometrician Frederic M. Lord,〔(ETS Research Overview )〕 the Danish mathematician Georg Rasch, and Austrian sociologist Paul Lazarsfeld, who pursued parallel research independently. Key figures who furthered the progress of IRT include Benjamin Drake Wright and David Andrich. IRT did not become widely used until the late 1970s and 1980s, when practitioners were told the "usefulness" and "advantages" of IRT on the one hand, and personal computers gave many researchers access to the computing power necessary for IRT on the other. Among other things, the purpose of IRT is to provide a framework for evaluating how well assessments work, and how well individual items on assessments work. The most common application of IRT is in education, where psychometricians use it for developing and designing exams, maintaining banks of items for exams, and equating the difficulties of items for successive versions of exams (for example, to allow comparisons between results over time).〔Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). ''Fundamentals of Item Response Theory''. Newbury Park, CA: Sage Press.〕 IRT models are often referred to as ''latent trait models''. The term ''latent'' is used to emphasize that discrete item responses are taken to be ''observable manifestations'' of hypothesized traits, constructs, or attributes, not directly observed, but which must be inferred from the manifest responses. Latent trait models were developed in the field of sociology, but are virtually identical to IRT models. IRT is generally claimed as an improvement over classical test theory (CTT). For tasks that can be accomplished using CTT, IRT generally brings greater flexibility and provides more sophisticated information. Some applications, such as computerized adaptive testing, are enabled by IRT and cannot reasonably be performed using only classical test theory. Another advantage of IRT over CTT is that the more sophisticated information IRT provides allows a researcher to improve the reliability of an assessment. IRT entails three assumptions: # A unidimensional trait denoted by ; # Local independence of items; # The response of a person to an item can be modeled by a mathematical ''item response function'' (IRF). The trait is further assumed to be measurable on a scale (the mere existence of a test assumes this), typically set to a standard scale with a mean of 0.0 and a standard deviation of 1.0. Unidimensionality should be interpreted as homogeneity, a quality that should be defined or empirically demonstrated in relation to a given purpose or use, but not a quantity that can be measured. 'Local independence' means (a) that the chance of one item being used is not related to any other item(s) being used and (b) that response to an item is each and every test-taker's independent decision, that is, there is no cheating or pair or group work. The topic of dimensionality is often investigated with factor analysis, while the IRF is the basic building block of IRT and is the center of much of the research and literature. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「item response theory」の詳細全文を読む スポンサード リンク
|